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Forcing axioms
▶ A class of forcings C .

▶ An uncountable cardinal κ ≥ ω1.

FA(C , κ): For every P ∈ C and every collection D of dense subsets of P
with |D | ≤ κ, there is a filter on P that meets every member of D .

▶ Martin’s Axiom: c.c.c. forcings and κ arbitrary.

▶ Increasing κ or enlarging C yields stronger axioms.

MM ⇔ SPFA ⇒ PFA ⇒ MAω1
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Old but gold
Question
What are some examples of forcing axioms strictly stronger than MAω2?

Let FA∗ := FA(σ-closed + ω2-c.c., ω2).

▶ (Shelah) FA∗ is inconsistent.

▶ There are some rather technical consistent fragments of FA∗.

Question
Do we have forcing axioms implying certain statements like |R| ≥ ω3,
TP(ω3), SCH, etc.?
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Iteration and forcing axioms

PFA

CS iteration (Shelah)

FS iteration
(Neeman)

SPFA

RCS iteration (Shelah)

FS iteration
(Gitik,Magidor)

FS iteration with
countable virtual models

(Veličković)

No iteration theorem for stationary-set preserving forcings.
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Every maths talk needs a joke

Question
What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: “A higher strong forcing axiom is a forcing axiom we really want to
exist. We expect it to be as nice as PFA or even MM. It answers all our
questions, like a perfect partner, tolerates our grumbles, doesn’t drag us
shopping, shares the TV remote without a fight, never hogs the last slice of
pizza, doesn’t spend money on garbage, etc.
Basically, it’s the axiom we can trust to have our back.
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I will discuss certain consistency results that could be regarded as potential
consequences of an imaginary higher forcing axiom.
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Guessing models

Definition (Viale, Weiss)
M ≺ H(θ) is a κ-guessing model if for every x ∈

⋃
X∈M P(X) the following

are equivalent.
1. ∃x∗ ∈ M so that x ∩ M = x∗ ∩ M,
2. for every a ∈ M with |a| < κ, a ∩ x ∈ M.

Theorem (Viale, Weiss)
PFA implies GMP: {M ≺ H(θ) : |M| = ω1 ∧ M is ω1-guessing } is stationary
for every θ ≥ ω2.
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Consequences

¬CH

wKH ¬□(ω2, λ) TP(ω2) SCH ¬AP(ω1)

GMP

PFA

There is a supercompact cardinal

Cox, Krueger
Weiss

Krueger+Viale

Viale, Weiss
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GMP ⇒ TP

▶ Let T ∈ M ≺ H(ω3).
▶ T is an ω2-tree .
▶ M is ω1-guessing.
▶ Let δ := M ∩ ω2.
▶ Pick t ∈ Tδ.
▶ Note that T ∩ M = T<δ.

T

ω2

Tδ
t

bta
s

a ∩ bt = a ∩ bs ∈ M
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Approachability

Definition
A sequence a⃗ := ⟨aξ : ξ < ω2⟩ of bounded subsets of ω2 is called an
approaching sequence.

Definition
δ < ω2 is approachable by a⃗ if there is c ⊆ δ such that

1. ot(c) < δ.
2. ∀ξ < δ ∃ζ < δ aξ ∩ c = aζ .



Outline GMP Higher GMP IGMP Higher IGMP

Approachability

Definition
A sequence a⃗ := ⟨aξ : ξ < ω2⟩ of bounded subsets of ω2 is called an
approaching sequence.

Definition
δ < ω2 is approachable by a⃗ if there is c ⊆ δ such that

1. ot(c) < δ.
2. ∀ξ < δ ∃ζ < δ aξ ∩ c = aζ .



Outline GMP Higher GMP IGMP Higher IGMP

Approachability ideal
The approachability ideal I[ω2] is generated by Jns(ω2) and sets of the form

B(a⃗) := {δ < ω2 : δ is approachable by a⃗}

▶ (Shelah) Sω
ω2

∈ I[ω2].

▶ (Shelah) Is it consistent that I[ω2] = Jns(ω2) mod Cof(ω1)?

Definition
AP(ω1) states that ω2 ∈ I[ω2].



Outline GMP Higher GMP IGMP Higher IGMP

Approachability ideal
The approachability ideal I[ω2] is generated by Jns(ω2) and sets of the form

B(a⃗) := {δ < ω2 : δ is approachable by a⃗}

▶ (Shelah) Sω
ω2

∈ I[ω2].

▶ (Shelah) Is it consistent that I[ω2] = Jns(ω2) mod Cof(ω1)?

Definition
AP(ω1) states that ω2 ∈ I[ω2].



Outline GMP Higher GMP IGMP Higher IGMP

Approachability ideal
The approachability ideal I[ω2] is generated by Jns(ω2) and sets of the form

B(a⃗) := {δ < ω2 : δ is approachable by a⃗}

▶ (Shelah) Sω
ω2

∈ I[ω2].

▶ (Shelah) Is it consistent that I[ω2] = Jns(ω2) mod Cof(ω1)?

Definition
AP(ω1) states that ω2 ∈ I[ω2].



Outline GMP Higher GMP IGMP Higher IGMP

Approachability ideal
The approachability ideal I[ω2] is generated by Jns(ω2) and sets of the form

B(a⃗) := {δ < ω2 : δ is approachable by a⃗}

▶ (Shelah) Sω
ω2

∈ I[ω2].

▶ (Shelah) Is it consistent that I[ω2] = Jns(ω2) mod Cof(ω1)?

Definition
AP(ω1) states that ω2 ∈ I[ω2].



Outline GMP Higher GMP IGMP Higher IGMP

GMP ⇒ ¬AP(ω1)

Proof. There are stationarily many non-approachable points of cofinality ω1.
Fix an approaching sequence b⃗ = ⟨bξ : ξ < ω2⟩.

Let M ≺ H(θ) be an
ω1-guessing model of size ω1 with b⃗ ∈ M.

0 )
ω1 δ = M ∩ ω2 ω2c

a γ > sup(a)

c ∩ a = c ∩ γ ∩ a = bγ ∩ a ∈ M
(∃c∗ ∈ M, c∗ ∩ M = c) ⇒ δ = c∗(ot(c)) ∈ M
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Let T := ZFC together with the statement that for every θ ≥ ω3, the set

{M ≺ H(θ) : |M| = ω2 ∧ Mω ⊆ M ∧ M is ω2-guessing}

is stationary in Pω3(H(θ)).

Theorem (Trang)
1. Con(ZFC + ∃ s.c. cardinal) ⇒ Con(T ).
2. Assume T. There is a transitive model M |= “ADR +Θ is regular” with

R ⊆ M.
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GMP+

Definition
M ≺ H(θ) of size ω2 is a strongly ω1-guessing model if it is the union of an
ω1-closed ∈-sequence of ω1-guessing models of size ω1.

Fact: Every strongly ω1-guessing model is an ω1-guessing model.

Definition (GMP+)
For every θ ≥ ω3, there are stationarily many strongly ω1-guessing
elementary submodels of H(θ)
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GMP+

M., Veličković
GMP+ implies I[ω2] = Jns(ω2) mod Cof(ω1).

Proof: No generator of I[ω2] possesses stationarily many approachable
points of cofinality ω1. If B(a⃗) is a counterexample, then we can find an
ω1-guessing model M ≺ H(ω3) of size ω1 with M ∩ ω2 ∈ B(a⃗) and a⃗ ∈ M.

Theorem (Mitchell)
I[ω2] = Jns(ω2) mod Cof(ω1) is consistent.
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GMP+

M., Veličković
Con(ZFC + there are two s.c. cardinals) ⇒ Con(GMP+).

The proof uses forcing with pure side conditions.

Let κ < λ be
supercompact cardinals. The conditions are finite sets of countable and
κ-Magidor virtual models which satisfy certain requirements with respect to
{α < λ : Vα ≺ Vλ}. The forcing is proper for all models involved and forces
κ = ω2 and λ = ω3.
Note that I[ω2] = Jns(ω2) mod Cof(ω1) implies |R| ≥ ω3 (due to Shelah.) So

▶ GMP+ ⇒ |R| ≥ ω3.
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Generalization

GMP(κ, γ) states that for every sufficiently large regular cardinal θ, the set

Gκ,γ(H(θ)) := {M ≺ H(θ) : |M| < κ ∧ M is γ-guessing}

is stationary in Pκ(H(θ)).

GMP+(κ, γ) is defined in the obvious way. So GMP ≡ GMP(ω2, ω1) and
GMP+ ≡ GMP+(ω3, ω1).

▶ The appropriate generalizations of the consequences of GMP or
GMP+ follow from their corresponding higher principles.
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IGMP

Definition (Cox, Krueger)
A γ-guessing model is called indestructible if it remains guessing in any
outer transitive universe in which γ is a cardinal.

▶ The principle IGMP is defined in the natural way.

▶ IGMP follows from GMP and specialization.

Theorem (Cox, Krueger)
PFA ⇒ IGMP.
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IGMP

Theorem (Cox, Krueger)
IGMP is consistent with arbitrary large continuum.

Idea: Iterate standard specializing forcing up to a supercompact cardinal κ
using finite conditions and then add an arbitrarily large number of reals.
The iteration is technical and delicate. The main difficulty is performing a
quotient analysis for models of size less than κ (the so-called κ-Magidor
models).
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TMP

Todorčević Maximality Principle.

Definition (TMP(κ+))
Every forcing that adds a new subset of κ+ whose initial segments are in
the ground model must collapse some cardinal.

Theorem (Todorčević, 2ℵ0 < ℵω1)
Suppose that every tree of size and height ω1 without cofinal branches is
special. Then TMP(ω1) holds.
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Theorem (Cox, Krueger, and 2ℵ0 < ℵω1)
IGMP ⇒ TMP(ω1)

Theorem (Golshani, Shelah)
TMP(κ+) is forceable, assuming suitable large cardinals.
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IGMP+

IGMP+ is defined similarly , however, it additionally requires the
ω1-guessing models to be indestructible.

Definition
M ≺ H(θ) of size ω2 is an indestructible strongly ω1-guessing model if it is
the union of an ω1-closed ∈-sequence of indestructible ω1-guessing models
of size ω1.
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IGMP+

M., Veličković
Suppose that V ⊆ W are transitive inner models of ZFC.
▶ V |= “IGMP+ + 2ω1 < ℵω2”.
▶ P(ω2)

V ̸= P(ω2)
W .

Then either P(ω1)
V ̸= P(ω1)

W or some V -cardinal ≤ 2ω1 is no longer a
cardinal in W .
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IGMP+

Corollary ( IGMP+ + 2ω0 < ℵω1 + 2ω1 < ℵω2)
Let W |= “ZFC” be a transitive extension with the same cardinals and reals.
Then P(ω2)

V = P(ω2)
W .

Corollary ( 2ℵ0 < ℵω1 + 2ℵ1 < ℵω2)
IGMP+ implies both TMP(ω1) and TMP(ω2).
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Con(IGMP+)

M., Veličković
Con(ZFC + there are two s.c. cardinals) ⇒ Con(IGMP+)
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∃ 1 s.c.

PFA
IGMP(ω2, ω1)

GMP(ω2, ω1) + TMP(ω1) + TP(ω2) + wKH + SCH + ¬□(ω2, λ) + SH

GMP+(ω3, ω1) + TMP(ω2) + TP(ω3) + ¬□(ω3, λ) + I[ω2] ∼ Jns(ω2)

∃ 2 s.c.

IGMP+(ω3, ω1)

Higher PFA :-)
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