A Very Strong Higher Guessing Model Principle

Rahman Mohammadpour IM PAN

- ightharpoonup A class of forcings \mathscr{C} .
- ▶ An uncountable cardinal $\kappa > \omega_1$.

- ightharpoonup A class of forcings \mathscr{C} .
- ▶ An uncountable cardinal $\kappa \ge \omega_1$.

 $\mathsf{FA}(\mathscr{C},\kappa)$: For every $\mathbb{P}\in\mathscr{C}$ and every collection \mathscr{D} of dense subsets of \mathbb{P} with $|\mathscr{D}|\leq\kappa$, there is a filter on \mathbb{P} that meets every member of \mathscr{D} .

- ightharpoonup A class of forcings \mathscr{C} .
- ▶ An uncountable cardinal $\kappa \ge \omega_1$.

 $\mathsf{FA}(\mathscr{C},\kappa)$: For every $\mathbb{P}\in\mathscr{C}$ and every collection \mathscr{D} of dense subsets of \mathbb{P} with $|\mathscr{D}|\leq\kappa$, there is a filter on \mathbb{P} that meets every member of \mathscr{D} .

▶ *Martin's Axiom*: c.c.c. forcings and κ arbitrary.

 \blacktriangleright A class of forcings \mathscr{C} .

Outline

▶ An uncountable cardinal $\kappa > \omega_1$.

 $\mathsf{FA}(\mathscr{C},\kappa)$: For every $\mathbb{P}\in\mathscr{C}$ and every collection \mathscr{D} of dense subsets of \mathbb{P} with $|\mathcal{D}| < \kappa$, there is a filter on \mathbb{P} that meets every member of \mathcal{D} .

- \blacktriangleright *Martin's Axiom*: c.c.c. forcings and κ arbitrary.
- ▶ Increasing κ or enlarging \mathscr{C} yields stronger axioms.

$$\mathsf{MM} \Leftrightarrow \mathsf{SPFA} \Rightarrow \mathsf{PFA} \Rightarrow \mathsf{MA}_{\omega_1}$$

Question

What are some examples of forcing axioms strictly stronger than MA_{ω_2} ?

Question

What are some examples of forcing axioms strictly stronger than MA_{ω_2} ?

Let $FA^* := FA(\sigma\text{-closed} + \omega_2\text{-c.c.}, \omega_2)$.

Question

What are some examples of forcing axioms strictly stronger than MA_{ω_2} ?

Let
$$FA^* := FA(\sigma\text{-closed} + \omega_2\text{-c.c.}, \omega_2)$$
.

► (Shelah) FA* is inconsistent.

Question

What are some examples of forcing axioms strictly stronger than MA_{ω_p} ?

Let $FA^* := FA(\sigma\text{-closed} + \omega_2\text{-c.c.}, \omega_2)$.

- ► (Shelah) FA* is inconsistent.
- ► There are some rather technical consistent fragments of FA*.

Question

What are some examples of forcing axioms strictly stronger than MA_{ω_2} ?

Let $FA^* := FA(\sigma\text{-closed} + \omega_2\text{-c.c.}, \omega_2)$.

- ► (Shelah) FA* is inconsistent.
- ► There are some rather technical consistent fragments of FA*.

Question

Do we have forcing axioms implying certain statements like $|\mathbb{R}| \geq \omega_3$, TP(ω_3), SCH, etc.?

Iteration and forcing axioms

Iteration and forcing axioms

No iteration theorem for stationary-set preserving forcings.

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist.

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM.

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner,

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles,

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles, doesn't drag us shopping,

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles, doesn't drag us shopping, shares the TV remote without a fight,

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles, doesn't drag us shopping, shares the TV remote without a fight, never hogs the last slice of pizza,

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles, doesn't drag us shopping, shares the TV remote without a fight, never hogs the last slice of pizza, doesn't spend money on garbage, etc.

Question

What is a higher strong forcing axiom? E.g., what is a/the higher PFA?

Answer: "A higher strong forcing axiom is a forcing axiom we really want to exist. We expect it to be as nice as PFA or even MM. It answers all our questions, like a perfect partner, tolerates our grumbles, doesn't drag us shopping, shares the TV remote without a fight, never hogs the last slice of pizza, doesn't spend money on garbage, etc.

Basically, it's the axiom we can trust to have our back.

I will discuss certain consistency results that could be regarded as potential consequences of an imaginary higher forcing axiom.

Guessing models

Definition (Viale, Weiss)

 $M \prec \mathcal{H}(\theta)$ is a κ -guessing model if for every $x \in \bigcup_{X \in M} \mathcal{P}(X)$ the following are equivalent.

- 1. $\exists x^* \in M$ so that $x \cap M = x^* \cap M$,
- 2. for every $a \in M$ with $|a| < \kappa$, $a \cap x \in M$.

Guessing models

Definition (Viale, Weiss)

 $M \prec \mathcal{H}(\theta)$ is a κ -guessing model if for every $x \in \bigcup_{X \in M} \mathcal{P}(X)$ the following are equivalent.

- 1. $\exists x^* \in M$ so that $x \cap M = x^* \cap M$,
- 2. for every $a \in M$ with $|a| < \kappa$, $a \cap x \in M$.

Theorem (Viale, Weiss)

PFA implies GMP: $\{M \prec \mathcal{H}(\theta) : |M| = \omega_1 \land M \text{ is } \omega_1\text{-guessing } \}$ is stationary for every $\theta \geq \omega_2$.

Consequences

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

$\mathsf{GMP} \Rightarrow \mathsf{TP}$

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

$GMP \Rightarrow TP$

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

$\mathsf{GMP} \Rightarrow \mathsf{TP}$

- ▶ Let $T \in M \prec \mathcal{H}(\omega_3)$.
- ▶ T is an ω_2 -tree .
- ▶ M is ω_1 -guessing.
- ▶ Let $\delta := M \cap \omega_2$.
- ▶ Pick $t \in T_{\delta}$.
- ▶ Note that $T \cap M = T_{<\delta}$.

$$a \cap b_t = a \cap b_s \in M$$

Approachability

Definition

A sequence $\vec{a} := \langle a_{\xi} : \xi < \omega_2 \rangle$ of bounded subsets of ω_2 is called an approaching sequence.

Approachability

Definition

A sequence $\vec{a} := \langle a_{\xi} : \xi < \omega_2 \rangle$ of bounded subsets of ω_2 is called an approaching sequence.

Definition

 $\delta < \omega_2$ is approachable by \vec{a} if there is $c \subseteq \delta$ such that

- 1. ot(c) < δ .
- 2. $\forall \xi < \delta \ \exists \zeta < \delta \ a_{\xi} \cap c = a_{\zeta}$.

The approachability ideal $I[\omega_2]$ is generated by $\mathfrak{J}_{ns}(\omega_2)$ and sets of the form

$$B(\vec{a}) := \{\delta < \omega_2 : \delta \text{ is approachable by } \vec{a}\}$$

The approachability ideal $I[\omega_2]$ is generated by $\mathfrak{J}_{ns}(\omega_2)$ and sets of the form

$$B(\vec{a}) := \{ \delta < \omega_2 : \delta \text{ is approachable by } \vec{a} \}$$

▶ (Shelah) $S_{\omega_2}^{\omega} \in I[\omega_2]$.

The approachability ideal $I[\omega_2]$ is generated by $\mathfrak{J}_{ns}(\omega_2)$ and sets of the form

$$B(\vec{a}) := \{ \delta < \omega_2 : \delta \text{ is approachable by } \vec{a} \}$$

- ▶ (Shelah) $S_{\omega_2}^{\omega} \in I[\omega_2]$.
- ▶ (Shelah) Is it consistent that $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \mathrm{Cof}(\omega_1)$?

The approachability ideal $I[\omega_2]$ is generated by $\mathfrak{J}_{ns}(\omega_2)$ and sets of the form

$$B(\vec{a}) := \{ \delta < \omega_2 : \delta \text{ is approachable by } \vec{a} \}$$

- ▶ (Shelah) $S_{\omega_2}^{\omega} \in I[\omega_2]$.
- ▶ (Shelah) Is it consistent that $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \operatorname{Cof}(\omega_1)$?

Definition

 $AP(\omega_1)$ states that $\omega_2 \in I[\omega_2]$.

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

Proof. There are stationarily many non-approachable points of cofinality ω_1 . Fix an approaching sequence $\vec{b} = \langle b_{\xi} : \xi < \omega_2 \rangle$.

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$c \cap a = c \cap \gamma \cap a = b_{\gamma} \cap a \in M$$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$c \cap a = c \cap \gamma \cap a = b_{\gamma} \cap a \in M$$

 $(\exists c^* \in M, c^* \cap M = c)$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$c \cap a = c \cap \gamma \cap a = b_{\gamma} \cap a \in M$$

 $(\exists c^* \in M, c^* \cap M = c) \Rightarrow \delta = c^*(\text{ot}(c))$

$$\mathsf{GMP} \Rightarrow \neg \mathsf{AP}(\omega_1)$$

$$c \cap a = c \cap \gamma \cap a = b_{\gamma} \cap a \in M$$

 $(\exists c^* \in M, \ c^* \cap M = c) \Rightarrow \delta = c^*(\text{ot}(c)) \in M$

Let T := ZFC together with the statement that for every $\theta > \omega_3$, the set

$$\{M \prec \mathcal{H}(\theta) : |M| = \omega_2 \land M^{\omega} \subseteq M \land M \text{ is } \omega_2\text{-guessing}\}$$

is stationary in $\mathcal{P}_{\omega_3}(\mathcal{H}(\theta))$.

Let T := ZFC together with the statement that for every $\theta \ge \omega_3$, the set

$$\{M \prec \mathcal{H}(\theta) : |M| = \omega_2 \land M^{\omega} \subseteq M \land M \text{ is } \omega_2\text{-guessing}\}$$

is stationary in $\mathcal{P}_{\omega_3}(\mathcal{H}(\theta))$.

Theorem (Trang)

- 1. $Con(ZFC + \exists s.c. cardinal) \Rightarrow Con(T)$.
- 2. Assume T. There is a transitive model $M \models \text{``AD}_{\mathbb{R}} + \Theta$ is regular" with $\mathbb{R} \subseteq M$.

Definition

 $M \prec \mathcal{H}(\theta)$ of size ω_2 is a *strongly* ω_1 -guessing model if it is the union of an ω_1 -closed \in -sequence of ω_1 -guessing models of size ω_1 .

Definition

 $M \prec \mathcal{H}(\theta)$ of size ω_2 is a *strongly* ω_1 -guessing model if it is the union of an ω_1 -closed \in -sequence of ω_1 -guessing models of size ω_1 .

Fact: Every strongly ω_1 -guessing model is an ω_1 -guessing model.

Definition

 $M \prec \mathcal{H}(\theta)$ of size ω_2 is a *strongly* ω_1 -guessing model if it is the union of an ω_1 -closed \in -sequence of ω_1 -guessing models of size ω_1 .

Fact: Every strongly ω_1 -guessing model is an ω_1 -guessing model.

Definition (GMP⁺)

For every $\theta \ge \omega_3$, there are stationarily many strongly ω_1 -guessing elementary submodels of $\mathcal{H}(\theta)$

M., Veličković

GMP⁺ implies $I[\omega_2] = \mathfrak{J}_{\rm ns}(\omega_2) \bmod \operatorname{Cof}(\omega_1)$.

M., Veličković

GMP⁺ implies $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \operatorname{Cof}(\omega_1)$.

Proof: No generator of $I[\omega_2]$ possesses stationarily many approachable points of cofinality ω_1 .

M., Veličković

GMP⁺ implies $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \operatorname{Cof}(\omega_1)$.

Proof: No generator of $I[\omega_2]$ possesses stationarily many approachable points of cofinality ω_1 . If $B(\vec{a})$ is a counterexample, then we can find an ω_1 -guessing model $M \prec \mathcal{H}(\omega_3)$ of size ω_1 with $M \cap \omega_2 \in B(\vec{a})$ and $\vec{a} \in M$.

GMP⁺

M., Veličković

GMP⁺ implies $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \operatorname{Cof}(\omega_1)$.

Proof: No generator of $I[\omega_2]$ possesses stationarily many approachable points of cofinality ω_1 . If $B(\vec{a})$ is a counterexample, then we can find an ω_1 -guessing model $M \prec \mathcal{H}(\omega_3)$ of size ω_1 with $M \cap \omega_2 \in B(\vec{a})$ and $\vec{a} \in M$.

Theorem (Mitchell)

 $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \bmod \operatorname{Cof}(\omega_1)$ is consistent.

M., Veličković

 $Con(ZFC + there are two s.c. cardinals) \Rightarrow Con(GMP^+).$

The proof uses forcing with pure side conditions.

GMP^+

M., Veličković

 $Con(ZFC + there are two s.c. cardinals) \Rightarrow Con(GMP^+).$

The proof uses forcing with pure side conditions. Let $\kappa < \lambda$ be supercompact cardinals. The conditions are finite sets of countable and κ -Magidor virtual models which satisfy certain requirements with respect to $\{\alpha < \lambda : V_{\alpha} \prec V_{\lambda}\}.$

GMP⁺

M., Veličković

 $Con(ZFC + there are two s.c. cardinals) \Rightarrow Con(GMP^+).$

The proof uses forcing with pure side conditions. Let $\kappa < \lambda$ be supercompact cardinals. The conditions are finite sets of countable and κ -Magidor virtual models which satisfy certain requirements with respect to $\{\alpha < \lambda : V_{\alpha} \prec V_{\lambda}\}$. The forcing is proper for all models involved and forces $\kappa = \omega_2$ and $\lambda = \omega_3$.

GMP⁺

M., Veličković

 $Con(ZFC + there are two s.c. cardinals) \Rightarrow Con(GMP^+).$

The proof uses forcing with pure side conditions. Let $\kappa < \lambda$ be supercompact cardinals. The conditions are finite sets of countable and κ -Magidor virtual models which satisfy certain requirements with respect to $\{\alpha < \lambda : V_{\alpha} \prec V_{\lambda}\}$. The forcing is proper for all models involved and forces $\kappa = \omega_2$ and $\lambda = \omega_3$.

Note that $I[\omega_2] = \mathfrak{J}_{ns}(\omega_2) \mod \operatorname{Cof}(\omega_1)$ implies $|\mathbb{R}| \geq \omega_3$ (due to Shelah.)

M., Veličković

 $Con(ZFC + there are two s.c. cardinals) \Rightarrow Con(GMP^+).$

The proof uses forcing with pure side conditions. Let $\kappa < \lambda$ be supercompact cardinals. The conditions are finite sets of countable and κ -Magidor virtual models which satisfy certain requirements with respect to $\{\alpha < \lambda : V_{\alpha} \prec V_{\lambda}\}$. The forcing is proper for all models involved and forces $\kappa = \omega_2$ and $\lambda = \omega_3$.

Note that $I[\omega_2]=\mathfrak{J}_{\mathrm{ns}}(\omega_2) \ \mathsf{mod} \ \mathrm{Cof}(\omega_1) \ \mathsf{implies} \ |\mathbb{R}| \geq \omega_3 \ \mathsf{(due \ to \ Shelah.)} \ \mathsf{So}$

▶
$$\mathsf{GMP}^+ \Rightarrow |\mathbb{R}| \geq \omega_3$$
.

Generalization

 $\mathsf{GMP}(\kappa, \gamma)$ states that for every sufficiently large regular cardinal θ , the set

$$\mathcal{G}_{\kappa,\gamma}(\mathcal{H}(\theta)) \coloneqq \{M \prec \mathcal{H}(\theta) : |M| < \kappa \land M \text{ is } \gamma\text{-guessing}\}$$

is stationary in $\mathcal{P}_{\kappa}(\mathcal{H}(\theta))$.

Generalization

 $\mathsf{GMP}(\kappa, \gamma)$ states that for every sufficiently large regular cardinal θ , the set

$$\mathcal{G}_{\kappa,\gamma}(\mathcal{H}(\theta)) \coloneqq \{M \prec \mathcal{H}(\theta) : |M| < \kappa \land M \text{ is } \gamma\text{-guessing}\}$$

is stationary in $\mathcal{P}_{\kappa}(\mathcal{H}(\theta))$.

 $\mathsf{GMP}^+(\kappa,\gamma)$ is defined in the obvious way.

Generalization

 $\mathsf{GMP}(\kappa, \gamma)$ states that for every sufficiently large regular cardinal θ , the set

$$\mathcal{G}_{\kappa,\gamma}(\mathcal{H}(\theta)) \coloneqq \{M \prec \mathcal{H}(\theta) : |M| < \kappa \land M \text{ is } \gamma\text{-guessing}\}$$

is stationary in $\mathcal{P}_{\kappa}(\mathcal{H}(\theta))$.

 $\mathsf{GMP}^+(\kappa,\gamma)$ is defined in the obvious way. So $\mathsf{GMP} \equiv \mathsf{GMP}(\omega_2,\omega_1)$ and $\mathsf{GMP}^+ \equiv \mathsf{GMP}^+(\omega_3,\omega_1)$.

► The appropriate generalizations of the consequences of GMP or GMP⁺ follow from their corresponding higher principles.

IGMP

Definition (Cox, Krueger)

A γ -guessing model is called *indestructible* if it remains guessing in any outer transitive universe in which γ is a cardinal.

Definition (Cox, Krueger)

A γ -guessing model is called *indestructible* if it remains guessing in any outer transitive universe in which γ is a cardinal.

► The principle IGMP is defined in the natural way.

Definition (Cox, Krueger)

A γ -guessing model is called *indestructible* if it remains guessing in any outer transitive universe in which γ is a cardinal.

- ► The principle IGMP is defined in the natural way.
- ► IGMP follows from GMP and specialization.

Definition (Cox, Krueger)

A γ -guessing model is called *indestructible* if it remains guessing in any outer transitive universe in which γ is a cardinal.

- ► The principle IGMP is defined in the natural way.
- ► IGMP follows from GMP and specialization.

Theorem (Cox, Krueger) $PFA \Rightarrow IGMP$.

Theorem (Cox, Krueger)

IGMP is consistent with arbitrary large continuum.

Theorem (Cox, Krueger)

IGMP is consistent with arbitrary large continuum.

Idea: Iterate standard specializing forcing up to a supercompact cardinal κ using *finite conditions* and then add an arbitrarily large number of reals. The iteration is technical and delicate.

Theorem (Cox, Krueger)

IGMP is consistent with arbitrary large continuum.

Idea: Iterate standard specializing forcing up to a supercompact cardinal κ using *finite conditions* and then add an arbitrarily large number of reals. The iteration is technical and delicate. The main difficulty is performing a quotient analysis for models of size less than κ (the so-called κ -Magidor models).

Outline

TMP

Todorčević Maximality Principle.

Definition (TMP(κ^+))

Every forcing that adds a new subset of κ^+ whose initial segments are in the ground model must collapse some cardinal.

TMP

Todorčević Maximality Principle.

Definition (TMP(κ^+))

Every forcing that adds a new subset of κ^+ whose initial segments are in the ground model must collapse some cardinal.

Theorem (Todorčević, $2^{\aleph_0} < \aleph_{\omega_1}$)

Suppose that every tree of size and height ω_1 without cofinal branches is special. Then $TMP(\omega_1)$ holds.

Theorem (Cox, Krueger, and $2^{\aleph_0} < \aleph_{\omega_1}$) $IGMP \Rightarrow TMP(\omega_1)$

Theorem (Cox, Krueger, and $2^{\aleph_0} < \aleph_{\omega_1}$) $IGMP \Rightarrow TMP(\omega_1)$

Theorem (Golshani, Shelah)

 $TMP(\kappa^+)$ is forceable, assuming suitable large cardinals.

IGMP $^+$ is defined similarly , however, it additionally requires the ω_1 -guessing models to be indestructible.

IGMP $^+$ is defined similarly , however, it additionally requires the $\omega_{\rm 1}\text{-guessing}$ models to be indestructible.

Definition

 $M \prec \mathcal{H}(\theta)$ of size ω_2 is an *indestructible strongly* ω_1 -guessing model if it is the union of an ω_1 -closed \in -sequence of indestructible ω_1 -guessing models of size ω_1 .

M., Veličković

Suppose that $V \subseteq W$ are transitive inner models of ZFC.

- $ightharpoonup V \models \text{``IGMP}^+ + 2^{\omega_1} < leph_{\omega_2}\text{''}.$
- $\triangleright \mathcal{P}(\omega_2)^V \neq \mathcal{P}(\omega_2)^W.$

Then either $\mathcal{P}(\omega_1)^V \neq \mathcal{P}(\omega_1)^W$ or some V-cardinal $\leq 2^{\omega_1}$ is no longer a cardinal in W.

Corollary (IGMP
$$^+ + 2^{\omega_0} < \aleph_{\omega_1} + 2^{\omega_1} < \aleph_{\omega_2}$$
)

Let $W \models$ "ZFC" be a transitive extension with the same cardinals and reals. Then $\mathcal{P}(\omega_2)^V = \mathcal{P}(\omega_2)^W$.

Corollary (IGMP
$$^+ + 2^{\omega_0} < \aleph_{\omega_1} + 2^{\omega_1} < \aleph_{\omega_2}$$
)

Let $W \models$ "ZFC" be a transitive extension with the same cardinals and reals. Then $\mathcal{P}(\omega_2)^V = \mathcal{P}(\omega_2)^W$.

Corollary (
$$2^{\aleph_0} < \aleph_{\omega_1} + 2^{\aleph_1} < \aleph_{\omega_2}$$
)

 $IGMP^+$ implies both $TMP(\omega_1)$ and $TMP(\omega_2)$.

$Con(IGMP^+)$

M., Veličković

 $\operatorname{Con}(\mathsf{ZFC} + \mathsf{there} \; \mathsf{are} \; \mathsf{two} \; \mathsf{s.c.} \; \mathsf{cardinals}) \Rightarrow \operatorname{Con}(\mathsf{IGMP}^+)$

$$\boxed{ \mathsf{GMP}^+(\omega_3,\omega_1) + \mathsf{TMP}(\omega_2) + \mathsf{TP}(\omega_3) + \neg \Box(\omega_3,\lambda) + I[\omega_2] \sim \mathfrak{J}_{\mathrm{ns}}(\omega_2) } \\ \\ \boxed{ \mathsf{GMP}(\omega_2,\omega_1) + \mathsf{TMP}(\omega_1) + \mathsf{TP}(\omega_2) + w\mathsf{KH} + \mathsf{SCH} + \neg \Box(\omega_2,\lambda) + \mathsf{SH} } \\ \\ + \mathsf{IGMP}(\omega_2,\omega_1) \leftarrow \\ \boxed{ \mathsf{PFA} } \\ \widehat{\downarrow} \\ \exists \ 1 \ \mathit{s.c.} \\ \boxed{ \exists \ 2 \ \mathit{s.c.} }$$