Finite Support Product of Strongly Proper Forcings ## Rahman Mohammadpour February 19, 2022 ## **Abstract** Given a sequence $\vec{\mathbb{P}}$ of strongly proper forcings, we use models as side conditions to construct a scaffolding forcing $\mathbb{M}(\vec{\mathbb{P}})$ so that forcing with it adds V-generic filters for finite sub-products of $\vec{\mathbb{P}}$. Let X be a set and let $\mathbb P$ be a forcing. A condition $p \in \mathbb P$ is said to be strongly $(X,\mathbb P)$ -generic if for every $q \leq p$, there is a condition $q \upharpoonright X \in \mathbb P \cap X$ such that every $r \in X \cap \mathbb P$ is compatible with q. For a collection $\mathcal S$ of sets, we say $\mathbb P$ is $\mathcal S$ -strongly proper, if for every $X \in \mathcal S$ and every $p \in \mathbb P \cap X$, there is a strongly $(X,\mathbb P)$ -generic condition $q \leq p$. These definitions are due to Mitchell [1]. We call $q \upharpoonright X$ a projection of q to X. It is easily seen that the product of finitely many $\mathcal S$ -strongly proper forcings is $\mathcal S$ -strongly proper. In fact, if $p \in \mathbb P$ and $q \in \mathbb Q$ are strongly $(X,\mathbb P)$ -generic and $(X,\mathbb Q)$ -generic, respectively, then (p,q) is strongly $(X,\mathbb P \times \mathbb Q)$ -generic. However, it is easy to see that finite support products of $\mathcal S$ -strongly proper forcings are not in general $\mathcal S$ -strongly proper forcing. **Definition 1.** Let $\vec{\mathbb{P}} = \langle \mathbb{P}_i : i \in I \rangle$ be a sequence of forcings and let also θ be a sufficiently large regular cardinal with $\vec{\mathbb{P}} \in H_{\theta}$. Assume that \mathcal{S} is a collection of elementary submodels M of H_{θ} with $\vec{\mathbb{P}} \in M$ such that for every $N, P \in \mathcal{S}$, if $N \in P$, then $N \subseteq P$. We let $\mathbb{M} := \mathbb{M}(\mathcal{S}, \vec{\mathbb{P}})$ consist of conditions $p = (\mathcal{M}_p, w_p)$ such that - 1. $\mathcal{M}_p \subseteq \mathcal{S}$ is a finite \in -chain, and - 2. $w_p : \operatorname{dom}(w_p) \to H_\theta$ is a finite function such that for every $i \in \operatorname{dom}(w_p)$, $w_p(i) \in \mathbb{P}_i$ and, moreover, for every $M \in \mathcal{M}_p$ with $i \in M$, $w_p(i)$ is strongly (M, \mathbb{P}_i) -generic. We say q is stronger than p and write $q \leq p$ if and only if $\mathcal{M}_q \supseteq \mathcal{M}_p$, and $w_q(i) \leq_{\mathbb{P}_i} w_p(i)$, for every $i \in \text{dom}(w_p)$. Institut für Diskrete Mathematik und Geometrie, TU Wien, 1040 Vienna, Austria. e-mail: rahmanmohammadpour@gmail.com **Lemma 2.** Let $M \in \mathcal{S}$. Assume that $p \in M \cap M$. Then there is a condition $q \leq p$ with $M \in \mathcal{M}_q$. *Proof.* Let q be defined as follows. Set $\mathcal{M}_q := \mathcal{M}_p \cup \{M\}$ which is a finite \in -chain. Note that $\operatorname{dom}(w_p) \subseteq M$. For each $i \in \operatorname{dom}(w_p)$, we can extend $w_p(i)$ to a strongly (M, \mathbb{P}_i) -generic condition $z_i \in \mathbb{P}_i$. Now let w_q be defined on $\operatorname{dom}(w_p)$ by letting $w_q(i) = z_i$. Notice that z_i is also (N, \mathbb{P}_i) -strongly generic for every model N in \mathcal{M}_p with $i \in N$. Thus q is a condition. It is clear that $q \leq p$. **Lemma 3.** Suppose that p is a condition in \mathbb{M} . Let $M \in \mathcal{M}_p$. Then p is strongly (M, \mathbb{M}) -generic. *Proof.* Define $p \upharpoonright M := (\mathcal{M}_{p \upharpoonright M}, w_{p \upharpoonright M})$ by letting $\mathcal{M}_{p \upharpoonright M} := \mathcal{M}_p \cap M$ and defining $w_{p \upharpoonright M}$ on $\operatorname{dom}(w_p) \cap M$ by letting $w_{p \upharpoonright M}(i)$ be some projection of $w_p(i)$ to M, say $w_p(i) \upharpoonright M$, which exists by the fact that such $w_p(i)$ is strongly (M, \mathbb{P}_i) -generic. Notice that $p \upharpoonright M$ belongs to M. Suppose that q is a condition in $\mathbb{P} \cap M$ extending $p \upharpoonright M$. Define a common extension, say r, of p and q as follows. Let \mathcal{M}_r be $\mathcal{M}_p \cup \mathcal{M}_q$ which is easily seen to be a finite \in -chain. Define w_r on $\operatorname{dom}(w_p) \cup \operatorname{dom}(w_q)$ by $$w_r(i) = \begin{cases} w_p(i) & i \notin M, \\ z_i & i \in \text{dom}(w_p) \cap M, \\ u_i & i \in \text{dom}(w_q) \setminus \text{dom}(w_p), \end{cases}$$ where z_i is a common extension of $w_q(i)$ and $w_p(i)$ (such condition exists as $w_q(i) \leq w_p(i) \upharpoonright M$), and $u_i \leq w_q(i)$ is a condition which is generic for every $N \in \mathcal{M}_r$ with $N \supseteq M$. Note that such a condition exists, as models in $\mathcal{M}_p \setminus \mathcal{M}_q$ forms a \subseteq -sequence, by our assumption on \mathcal{S} and \mathcal{M}_p . Thus one can inductively extend $w_q(i)$ to find a condition $u_i \leq w_q(i)$ which is (N, \mathbb{P}_i) or every model in $\mathcal{M}_p \setminus \mathcal{M}_q$, and hence is (N, \mathbb{P}_i) -generic for all relevant models. It is easy to see that r is a condition in \mathbb{M} with $r \leq p, q$. **Proposition 4.** \mathbb{M} *is* S-strongly proper. **Lemma 5.** Assume $a \subseteq I$ is a finite. Then the set of conditions $p \in M$ with $a \subseteq dom(p)$ is dense in M. Proof. Suppose p is a condition. By Lemma 2, we may assume that there is some model in \mathcal{M}_p which contains a. For every $i \in a \setminus \mathrm{dom}(w_p)$, let $M^i \in \mathcal{M}_p$ be the least model with $i \in M^i$. Let q be defined by letting $\mathcal{M}_q \coloneqq \mathcal{M}_p$ and extending w_p to w_q on $\mathrm{dom}(w_p) \cup a$ so that for every $i \in a \setminus \mathrm{dom}(w_p)$, $w_q(i)$ is strongly (M, \mathbb{P}_i) -generic, for every $M \in \mathcal{M}_p$ with $i \in M$. This is possible as i belongs to each model above M^i , thus we can inductively extend $\mathbf{1}_{\mathbb{P}_i}$ to a condition $w_q(i)$ which is strongly (M, \mathbb{P}_i) -generic for every $M \in \mathcal{M}_p$ containing i. **Proposition 6.** Let G be a V-generic filter on \mathbb{M} . Assume that a is a finite subset of I. Then $G_a := \{w_p \mid a : p \in G\}$ is a V-generic filter over $\prod_{i \in a} \mathbb{P}_i$. *Proof.* By Lemma 5, G_a is nonempty. It is clear that G_a is a filter. If $D \in V$ is a dense subset of $\prod_{i \in a} \mathbb{P}_i$, then $E := \{r \in \mathbb{M} : w_r \upharpoonright a \in D\}$ is dense. To see this, fix q in \mathbb{M} . By Lemma 5, we may assume $a \subseteq \text{dom}(w_q)$, then let $w \in D$ be such that $w \leq_{\prod_{i \in a} \mathbb{P}_i} w_q \upharpoonright a$, we can now define r by letting $\mathcal{M}_r = \mathcal{M}_q$ and letting w_r be defined the same as w on a, and otherwise let it be the same as w_q . Clearly r is an extension of q which belongs to E. Thus E is a dense subset of \mathbb{M} . Therefore there is some $p \in G \cap E$, which in turn implies $w_p \upharpoonright a \in G_a \cap D$. Thus G_a is V-generic. Remark 7. In fact, the mapping $p \mapsto w_p \upharpoonright a$ is a projection from \mathbb{M} to $\prod_{i \in a} \mathbb{P}_i$. ## References [1] William J. Mitchell. Adding closed unbounded subsets of ω_2 with finite forcing. *Notre Dame J. Formal Logic*, 46(3):357–371, 07 2005.