## Příkrý Forcing and Properness

## Rahman Mohammadpour

## **Abstract**

It is shown the Příkrý forcing for measurable  $\kappa$  is proper below  $V_{\kappa}$ .

Let  $\mathcal{U}$  be a measure on  $\kappa$ . The Příkrý forcing  $\mathbb{P}_{\mathcal{U}}$  consists of conditions  $p := (A_p, s_p)$ , where

- 1.  $A_p \in \mathcal{U}$ ,
- 2.  $s_p \in [\kappa]^{<\omega}$ , and
- 3.  $\max(s_p) < \min(A)$ .

A condition p is stronger than q, i.e.  $p \le q$ , if  $A_p \subseteq A_q$ ,  $s_p \cap \max(s_q) = s_q$ , and  $s_p \setminus s_q \subseteq A_q$ .

**Proposition 0.1.** For every regular  $\lambda > 2^{\kappa^+}$ , every  $X \in V_{\kappa}$ , every condition p, and every  $M \prec H_{\lambda}$  with  $p, X, U \in M$  of size  $< \kappa$ , there is  $q \leq p$  such that q is  $(M, \mathbb{P}, X)$ -generic, i.e.,

$$q \Vdash_{\mathbb{P}_{\mathcal{U}}} "M[\dot{G}] \cap X = M \cap X".$$

*Proof.* Let  $p := (A_p, s_p)$ . We first define a condition p' by letting

$$A_{p'} := \bigcap (M \cap \mathcal{U}),$$

and  $s_{p'} := s_p$ . By  $\kappa$ -completeness of  $\mathcal{U}$ ,  $A_{p'} \in \mathcal{U}$ . Clearly  $p' \leq p$ . Let  $\Omega$  be the set of pairs  $(\dot{\tau}, x)$  such that

- $\dot{\tau}$  is a  $\mathbb{P}_{\mathcal{U}}$ -name in M,
- $x \in X$ , and
- some condition below p forces  $\dot{\tau} = \check{x}$ .

Clearly  $|\Omega| < \kappa$ . Now by the Příkrý condition<sup>1</sup> and the  $\kappa$ -completeness of  $\mathcal{U}$ , there is  $B \subseteq A_{p'}$  such that  $q := (B, s_p)$  decides  $\dot{\tau} = \check{x}$ , for every  $(\dot{\tau}, x) \in \Omega$ . We claim that q is as required.

Suppose that  $\dot{\sigma}$  is forced by some condition  $q' \leq q$  to be in  $M[\dot{G}] \cap X$ . We may extend q' to some condition q'', find a  $\mathbb{P}_{\mathcal{U}}$ -name  $\dot{\tau} \in M$ , and an element  $x \in X$  such that q'' forces  $\dot{\tau} = \dot{\sigma} = \check{x}$ . Therefore,  $(\dot{\tau}, x) \in \Omega$ , since  $q'' \leq p$ . On the other hand, q must decide  $\dot{\tau} = \check{x}$  in the same way, that is  $q \Vdash \text{``}\dot{\tau} = \check{x}\text{''}$ . Notice that q is a direct extension of p. So by elementarity, there are  $A' \in \mathcal{U} \cap M$  and  $x' \in X \cap M$  such that  $(A', s_p)$  forces  $\dot{\tau} = \check{x}'$ . But  $q \leq (A', s_p)$ , and hence x' = x. Therefore,  $q'' \Vdash \dot{\sigma} \in M \cap X$ . Since  $\dot{\sigma}$  was arbitrary, we have

$$q \Vdash_{\mathbb{P}_{\mathcal{U}}} "M[\dot{G}] \cap X = M \cap X".$$

**Remark 0.2.**  $\mathbb{P}_{\mathcal{U}}$  preserves stationary sets in  $V_{\kappa}$ .

**Remark 0.3.** Letting  $X = \omega_1$  and M be countable, we have that  $\mathbb{P}_{\mathcal{U}}$  is semi-proper.

<sup>&</sup>lt;sup>1</sup>For every statement  $\phi$  in the forcing language of  $\mathbb{P}_{\mathcal{U}}$  and for every  $p \in \mathbb{P}_{\mathcal{U}}$ , there is  $q \leq p$  with  $s_q = s_p$  that decides  $\phi$ .